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SUMMARY 

This report  describes a method of analysis and digital  

program for computing the vibrational mode shapes and 

frequencies of l inear  orthotropic shells of revolution. 

approximate energy method (finite element) i s  employed, 

and solutions a r e  computed using a n  i terative process  

s imi la r  to the Stodola-Vianello method for  beam analysis.  

An 

In developing the program, pr imary  emphasis was 

placed on numerical  accuracy, generality, minimum input 

requirements,  and economy of computer execution cos ts ,  

One of the program's  components which is independently 

useful for other applications i s  a very  general  routine for 

computing solutions corresponding to  a rb i t r a ry  s ta t ic  

loadings. 

Several  examples a r e  presented of solutions computed 

by the program. 
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Section 1 

INTRODUCTION 

Exact analytical solutions to  shell problems can be obtained in only a 

few special  cases .  Accordingly, in recent yea r s  attention has been directed 

toward developing computer-oriented methods of obtaining accura te  approxi- 

mate solutions to various general  classes of shell  problems. 

Straightforward finite -difference equations have been used success-  

fully i n  some applications. However, complicated problems (such as those 

involving i r r egu la r  geometry) frequently involve solution of la rge  numbers 

of poo r 1 y - c ondit ione d s imult a ne ous alg eb r ai c e quat ions o r hi g h - o r de r 

eigenproblems; accordingly, accumulation of ar i thmetic  round-off e r r o r  

may be a significant factor ,  

The recent t rend has  been toward the use of finite element methods. 

The point of view usually taken i n  this  approach is  that the shel l  (or other 

s t ruc ture)  is represented as a n  assemblage of interconnected elements;  and 

that the displacement field over the inter ior  of each element is  approximated 

as a specific function of the motion components of its boundary nodes. 

Alternatively, finite element techniques as usually applied may be regarded 

as approximate energy methods; and, provided that deformation compatibility 

requirements ac ross  all element boundaries a r e  properly accounted for ,  the 

number and f o r m  of the displacement functions is  entirely a rb i t ra ry .  

resor t ing to lumping of distributed mass o r  distributed applied forces at 

element boundaries, Lagrange's equation may be used to  obtain sys t em equa- 

tions corresponding to the selected se t  of displacement functions. 

vibration of shells of revolution, independent se t s  of solutions exist for  each 

circumferent ia l  wave number. 

Without 

F o r  f r ee  

There  a r e  significant differences between ordinary finite-difference 

techniques and finite element methods which may be i l lustrated by the 
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following example. 

ways as follows: 

Suppose a shell  of revolution is analyzed i n  two different 

1. The shell  is representcd a s  n annular finite e lements  of 
equal length. Within each element, the displacement field 
is approximated by a l inear combination of eight independent 
functions, such that t he re  is a one-to-one correspondence 
between the function coefficients, ai ( i = l  through 8), and the 
displacements and rotations of the element boundaries (i. e., 
the eight a ' s  may be expressed in t e r m s  of the th ree  d is -  
placements and the meridional rotation at the element 's  
boundaries). Accordingly, a l l  deformation compatibility 
requirements a r e  identically satisfied if the 4 ( n t l )  boundary 
motion components a r e  chosen a s  generalized coordinates. 
(Some other 4 ( n t l )  l inear  combinations of the 8n a ' s  could 
have been selected as  generalized coordinates, provided the 
compatibility requirements were  properly accounted for.) 

2. The problem is analyzed using a standard finite difference 
technique involving solution of four coupled difference 
equations in the th ree  displacements and the meridional 
rotation. The difference net is composed of n t l  equally 
spaced points. 

Similari t ies between the two approaches a r e  evident; both involve a banded 

set of 4(nt1)  algebraic equations in the same  var iables ,  namely the displace- 

ments  and meridional rotations at n + l  equally spaced locations along the 

meridian of the shell. 

execute the two procedures  would not differ substantially. 

generally the case* that unless n is ve ry  large,  the energy method is sub- 

stantially m o r e  accurate  than the f ini te  difference method. Also, accumu- 

lation of ar i thmetic  round-off e r r o r  increases  substantially with la rge  n, so 

that consideration of both computer execution cost  and numerical  accuracy 

strongly favors  the energy method. 

Accordingly, the computational efforts required t o  

However, it is 

Investigators using finite difference methods have employed severa l  

different procedures  t o  compute the f r ee  vibration charac te r i s t ics  of shells 

of revolution, including : ** 

* 
This is readily shown by comparison with exact solutions for  a wide variety 
of static and dynamic beam, plate and shell problems. 

See e.g., Cohen (1964, 1965), Kalnins (1964, 1965), Klein (1964), and 
McDonald ( 196 5). 

** 

1-2 
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1. Iteration of "assumed" frequencies until the required boundary 
conditions a r e  closely approximated ( s imi la r  to  the well-known 
Myklestad method for computing beam modes and frequencies), 

2. I terative improvement of a succession of approximate mode 
shapes ( s imi la r  to  the Stodola - Vianello method applied to  
beams) ,  using orthogonality relations t o  "sweep out" lower 
modes, in computing higher modes, and 

3. Direct solution of large-order matrix eigenproblems of the 
f o r m  (02M - K) X = 0 ,  where the elements of the generalized 
coordinate vector X a r e  the finite -difference variables,  

Investigators using finite element methods have usually taken an approach 

s imi la r  to the las t  one outlined above, except that the generalized coordinates 

a r e  the node point motion components. 

(e. g., Cholesky-Givens, Wilkinson, etc.), this procedure i s  limited by steeply 

r is ing computer execution costs,  numerical accuracy problems,  and data 

storage limitations to  relatively low order  eigenproblems; accordingly, i t  

is res t r ic ted  to  systems which can be well represented by a relatively smal l  

number of elements. 

Using standard solution techniques 

The formulation presented in this report  uses  a finite element approach. 

The solution technique used i s  an  adaptation of the one described by Whetstone 

and Jones (1968) for computing the modes and frequencies of a rb i t r a ry  l inear  

space frames. In solving for the Jth mode (associated with a par t icular  c i r -  

cumferential  wave number),  the state of the shell  i s  characterized by the 

coefficients of J whole-structure displacement functions, the f i r s t  J- 1 of 

which a r e  previously determined accurate approximations of the f i r s t  J-1 
modes,  and the Jth function is a n  approximation of the Jth mode shape. 

highest-frequency solution t o  the corresponding Jth order  (0 M - K)X = 0 

eigenproblem gives an  interim approximation of the Jth mode, which in turn  

is used t o  compute a n  equivalent static loading f rom which a further improved 

approximation of the Jth mode is evaluated. 

peatedly until the desired accuracy i s  achieved. 

The 
2 

This process  i s  executed r e -  

1-3 



LMSC/HREC A791267 

I 
I 

Section 2 

FREE VIBRATIONS 

2 .1  EQUATIONS OF MOTION 

The free-vibration mode shapes of linear shells of revolution can 

easily be shown to  be of the form 

where cp i s  the circumferc>ntial angle, 6 a meridional position coordinate, 

and u, v ,  and w the meridional, circumferential, and radial  components, 

respectively, of the mode s h a p e s .  
m m  m 

modal functions u , v , and w cannot be determined i n  closed form. 

Except for a few special  cases ,  the 

In the present analysis,  shells of revolution a r e  modelcd as  asseiri- 

blages of finite elements,  a s  shown on Figure 2- 1 .  

labled r = 1 ,  ( I ) ,  n a n d  the clement boundaries r = 1 ,  ( l ) ,  n t l .  

The elements a r e  

0 f 

1 2 3 ’  
I 

’ r-1 I- 

I 

E 1 e m en  t B oun d a r i e s 

Figure 2 - 1  - Axial Section of Shell Model 

2 - 1  
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1 

In the finite element formulation, developed in  detail  i n  Sections 3 and 

4, the displacement components over the inter ior  of each element a r e  
approximated as cubic functions of the meridional position coordinate, 5 .  

In terms of a set of generalized coordinates which wil l  subsequently 

be discussed i n  detail, the  kinetic and potential energ ies ,  T and V,  
respectively,  of a shel l  may be writ ten as follows: 

N N 

V = 2 c i K i j c  j *  

>k 
The c. 's  a r e  coefficients of whole-shell displacement functions , M..  and 

J 1J 
K..  are  the generalized m a s s  and stiffness coefficients, respectively,  and 

1J 

The Lagrangian function is defined as 

L = T - V ,  

and Lagrange 's  equation for  undamped f ree  vibration i s  

= 0 i = 1, ( l ) , N .  . 

(2- 3) 

(2-4) 

Substitution of Equations (2-1) and (2-2) into (2-4) gives the equations 

XC 
The index, m, is  omitted for convenience. 

2 -2 
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of motion as 
N N EM..?.+ C K . . C  = o 

1J J 1~ j 
i = l , ( l ) , ~ .  

j=1 j = l  

Assuming solutions of Equation (2-5) of the fo rm 

- c c .  sinwt,  
j J 

one obtains 

(2- 5) 

Equation (2-7) is wri t ten in matr ix  form as  

where M is the ma t r ix  of M. I s  and K i s  the mat r ix  of Ki j t s ,  t e rmed the 

r l rnassff  and "s t i f fnesst t  ma t r i ces ,  respectively,  and 
lj 

- c =  ' .  (2-9) 

The M- and K-matr ices  must  be determined for the whole shell, but, since 

the sys t em is modeled as a n  assembly of finite e lements ,  the kinetic and 

potential energies of a typical element a r e  considered f i r s t .  

2 - 3  
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In this formulation the generalized coordinates, c j = 1, (l), N, a r e  jy 
defined to be coefficients of displacement functions. 

( l ) ,  N, a r e  the values of those functions over the r - th  element, the deform- 

ation pat tern of the r - th  element for the m-th circumferential  mode may be 

wri t ten as 

Where ';f((,cp), j = 1, J 

where 

(2- 10) 

(2- 11) 

F o r  simplicity i n  formulating the potential energy, it is assumed that 

the s ta t ic  loading function is known which produces the deformation pattern 
-r  
u. (t,<p). 

J 
It is expressed as 

so that  

(2- 12) 

(2- 13) 

mr mr m r  The components u , v , and w , and the coordinates 4 and <p a r e  

defined i n  Section A. 1. The load components Pmr uj  * 'vj , and P 
correspond i n  direction to u,  v, and w, respectively. 

mr mr j j j 

w j 

2 -4 
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The mass per  unit a r e a  i s  given by 

where p is the mass per  unit volume, and h(4) i s  the shel l  thickness. 

With the met r ic  coefficients A(4) and R(S), defined i n  Section A. 1, and with 

the effect of rotatory inertia neglected, the kinetic energy of the r - th  

element is 

where  Lr is the length of the element r .  

Similar ly ,  the potential energy of the r - th  element is 

N 2n L 
r N  

Vr = 1 J c. Kt”<(<,q)) c p? (4,Cp) A ( ( )  R(()  d( d p  = 
2 1 j~ 

0 0 i=l  j = l  

The two integrals a r e  defined a s  

and 

2-5  
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so that 

The kinetic and potential energies of the whole shel l  a r e  

N N  
T = 2 Tr  = 1 2 Eti [g z:j]&j, and 

i=l  j=1 r= l  r = l  

N N  

2 
r=l r= l  

Comparison with Equations (2- 1) and (2-2)  shows that 

n 

r= l  

K i j  = 2 . 
r=l 

2.2 SOLUTION BY ITERATION 

Solutions to  Equation (2-8)  can be accurately obtained by means of 

s eve ra l  well  known numerical methods, provided the equations a r e  wel l  

conditioned and not of too high order.  These conditions a r e  obviously 

dependent upon the number and nature of the generalized coordinates. 

(2- 19) 

(2- 20) 

(2-21) 

(2-22) 

(2-23) 

(2- 24) 

The following discussion is concerned with whole-shell deformation 

patterns corresponding to  particular static loadings as coordinates. 

2 -6 
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Suppose the shel l  i s  subjected to a se t  of static loading functions of the 

fo rm of Equation (2-12), and the corresponding deformation pattern i s  de te r -  

mined. 

of Equation (2-8) a r i s e s ,  i n  which the coordinates, c 

cients of the N whole shell  deformation patterns.  

If N functions a r e  used, a n  N-th o rde r  eigenproblem of thc f o r m  

a r e  simply coeffi- 
j’ 

The success  of this method is contingent upon a judicious choice of 

loading functions. An i terat ive procedure for obtaining a succession of 

improved functions is discussed below and the method used for static 

analysis i s  presented i n  Section 3 .  

Suppose that very accurate  approximations to the first N-1 modes are  

known. Then, i f  one chooses those functions as the first N-1 displacement 

functions corresponding to  generalized coordinates c l ,  c2,  . . . , c N-1’ and, 

i n  addition, a function approximating the N-th mode, the mat r ices  i n  

Equation (2-8) appear  as 

M1 1 M12 M13 ’ 

M22 M23 

Symmetric 
- 

M33 
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1 ,  

Symmetr ic  I 
(2-25) 

The superscr ipt  (1) denotes the f i rs t  approximation t o  the N-th mode shape. 

Solutions to Equation (2-8)  a r e  the previously determined f i r s t  N-1 modes,  

and a n  upper bound approximation to the N-th sys tem mode. 

the f i r s t  N-1 eigenvectors a r e  nearly 

Therefore ,  * 
of the fo rm 

0 

, respectively. 

4 C  
If the f i r s t  N - 1  modes were  known exactly, the eigenvectors would be a s  
shown; however, some residual  ari thmetic e r r o r  i s  always present ,  so 
tha t  these functions a r e  not identically orthogonal. Instead, the t e r m s  
shown as ze ros  a r e  actually numbers of magnitude much smal le r  than unity. 

I 
I 2 - 8  
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(1) 
CN’ associated with the highest frequency solution, The eigenvector, 

(1) 
0 of Equation (2-8) is represented a s  N’ 

( 2 -  26)  

F r o m  Equation ( 2 -  10) one obtains the f i r s t  in te r im approximation to  

the N-th sys t em mode a s  a set  of elemental deformation patterns defined a s  

(2-27) 

j=  1 

where  ti? (t,cp), a s  defined by Equation (2-1 l ) ,  descr ibes  the deformation of 

the r - th  element associated with the j-th whole-shell mode shape. 
J 

After  such a n  approximate solution has been computed a n  improved 

approximation can be calculated a s  follows. 

tions a se t  of element iner t ia l  loading functions i s  generated as 

From the in t e r im  approxima- 

2 - 9  
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The deformation of the shell  corresponding to this static loading is the 

second approximation to  the N-th system mode. 

until satisfactory convergence is reached. 

The procedure i s  repeated 

Several  c r i te r ia  a r e  available for determining acceptable convergence; 

some of these a r e  

(1) ( e 4  
(a)  wN is approximately equal to o N 

(1 1 (1) (1) (1) 
and KNNs NN (b) MiN and KiN a r e  much smaller  than M 

respectively, f o r  i = 1, ( l ) ,  N- 1. 

(1) - (1 1 
a r e  much smaller  than C for  i = 1, ( l ) ,N-1 .  (‘1 ‘iN NN 

It is interesting to note that the off-diagonal t e r m s  of Equation (2-25) 
except those of the N-th rows and columns a r e  many orders  of magnitude 

smal le r  than the diagonal t e r m s .  This i s  a resu l t  of orthogonality of the 

free  vibration modes 1 through N-1. 

Initial approximations may be prescr ibed ei ther  by directly stating 

the displacement field o r  by allowing the program to  compute the displace- 

ment function corresponding t o  a specified s ta t ic  loading. Experience has 

revealed that crude approximations a r e  adequate because of the rapidity of 

convergence of the repetitive solution technique. 

The only obvious pitfall i n  selecting a n  init ial  approximation i s  that of 

choosing a deformation pattern for the N-th sys tem mode which is a l inear 

combination of modes 1 through N-1. 

(2-25) a r e  singular. This e r r o r  is  more  likely to occur with higher values 

of N;  therefore ,  since lower system modes a r e  usually of pr imary  concern 

and the probability of such a n  occurrence is slight, this i s  not considered 

a ser ious  weakness of the method. 

In this  case  the matr ices  of Equations 

2-10 
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Section 3 

STATIC ANALYSIS 

Execution of the repetitive procedure described in  the preceding 

section requires  solutions to statically loaded finite element shel l  assembl ies  

with specified boundary conditions, that i s ,  displacement fields , z, have to  

be obtained for given static loading functions, 3. 

These solutions a r e  obtained through application of the theorem of 

superposition for l inear s t ructures  so that the desired complete displace- 

ment fields a r e  given by 

al is the displacement field obtained by restraining all element boundary 

motions and subjecting the "fixed edge" d e m e n t s  to the loading, 9. With 

element boundaries unrestrained (except for specified boundary conditions), 

z2 is  the displacement field produced by -&-, where &i s  the set  of element 

boundary reaction loads corresponding to al. 

A variation of this method is described below. It is  a state vector 

"walk-through'' procedure,  in which, unless otherwise specified, pr imed 

quantities re fer  to  the right boundary and unprimed quantities to the left 

boundary of a n  element. 

t t' 
The total forces ,  f and f , a t  the boundaries of the r - th  element may 

be represented a s  

3-1 
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I 
where f , f 

element subjected to  boundary deformation, and f , f a r e  the forces  

required a t  the boundaries of a n  element subjected to applied surface loading 

and restrained against  boundary deformation. 

edge forces .  

a r e  the fo rces  required at the boundaries o,f a n  unloaded 

The la t ter  a r e  te rmed fixed 

The boundary force-displacement relationship of the r - t h  finite 

element is expressed a s  

so that the total forces a r e  

where q ( r )  and q'(r)  represent  the three displacement components and the 

meridional rotation of the left and right boundary, respectively, and 

i s  the r - th  element s t i f fness  matrix. 

presented in  Section 4. 

The derivation of this  relation is 

Equation ( 3 - 3 )  is rearranged to  give a n  explicit expression for q' and 
t '  

f , so that  

3 -2 
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To simplify Equation ( 3 - 4 ) ,  the vectors,  

a r e  defined a s  s ta te  vectors ,  s' and s ,  respectively, and the mat r ix  

and the vector 

(r  1 
a r e  te rmed the t ransfer  mat r ix  and the load vector,  respectively. 

( 3 - 4 )  can now be written a s  

Equation 

>;< 
!B4 and I represent  4-th order  zero and identity mat r ices ,  respectively. 

4 

3-3  
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for  the r - th  element. 

Compatibility of deformations and equilibrium of forces  a r e  required 

at the ( r t 1 ) - t h  element boundary common to the two contiguous elements ( r )  

and ( r t l ) .  Deformation compatibility is given by 

q‘(r) = q ( r + l )  . (3 -  8 )  

Force  equilibrium is described by the following equation 

(3 -  9 )  
t’ f ( r )  t f t ( r t l )  + Z ( r t 1 )  q’(r) t p(r-/-l) = o , 

where K(rS1)  reflects a n  attached elastic ring sys t em a t  the element boundary 

( r t l ) ,  and p(rt1) i s  a n  externally applied ring load. 

Equations ( 3 - 8 )  and (3 -9 )  can be combined into a mat r ix  equation 

of the form 

s ( r t 1 )  = J ( r t 1 )  s’(r) + p(rS1) ( 3 -  10) 

where 

Substituting Equation ( 3 - 7 )  into ( 3 -  l o ) ,  one obtains the governing difference 

equation with variable coefficients as  

s ( r + l )  = J ( r t 1 )  T ( r )  s(r)  t J(r+l)  g(r) t p ( r t 1 )  . ( 3 - 1 1 )  

3 - 4  
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F o r  the more  common case of R ( r + l )  = 0 and F(r+l) = 0 Equation (3-11) 
simplifies to 

s ( r t 1 )  = J ( T ( r )  s ( r )  t z(r)) 
i n  which 

Equation (3-1 1)  becomes 

s ( r t 1 )  = T ( r )  s ( r )  t g ( r )  . (3- 12) 

As outlined below the solution to  this difference equation is obtained 

in  two steps: 

(a) the unknown quantities of the two states  s(1) and s(nt-1) a r e  
found for given boundary conditions and given loads, 

(b) the inter ior  states a r e  computed f rom the difference 
equation (3- 12) using s (  1) as  a n  initial vector. 

F r o m  Equation (3- 12) 

S(3) = T(2)  T ( l )  s (1)  + T(2)  g(1) f g(2) 

. 

3-5 



LMSC/HREC A791267  

Equation (3-  13)  i s  simplified t o  

where 

y = A x t e  

y = s ( n t 1 )  and x = s(1)  . 

(3 -14)  

The boundary state vectors are  partitioned into known and unknown 

quantities so that 

(3-15)  - - - - x = P x x ,  = = p Y y  

in which Xk, yk a r e  the known, Fu, Tu a r e  the unknown quantities, and Px, 

P a r e  permutation mat r ices  , 
>:C 

Equation (3-14) can now be rewrit ten as 
Y 

(3-16)  - - 1  - 
y = P A P  x f P  e .  

Y X Y 
With 

Equation (3 -  

= P A P ; ’ ,  and 
Y 

Y 
- e = P e  

6 )  becomes - y = X Z f t - *  

The unknown boundary quantities a r e  determined by partitioning 

Equation (3 -  17) i n  the following manner: 

* 
Permutat ion mat r ices  for various boundary conditions a r e  discussed in  
Appendix A. 3. 

3 -6 
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and solving for F and L; so  that 
U u '  

The solution may be writ ten in  two vector equations a s  

- - -1  - x = A I 2  (yk - x,, Fk - e l ) ,  and 
U 

For cases  in  which the known boundary quantities a r e  zero,  the solution is 

The state at r=l  is  
-1 - x = Px x = s(1) , 

and the s ta tes  at r=2 ,  ( l ) ,  n a r e  obtained by successive use of Equation 

(3-12). 

3-7 
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Section 4 

FINITE ELEMENT 

4.1 GENERAL 

In recent years  the l i terature  on finite element methods and various 

types of elements has increased s o  vastly that only a few of the papers  can 

be mentioned here .  

To analyze a s t ructural  system composed of a n  assemblage of finite 

elements and exposed to a n  a rb i t ra ry  loading, one must  obtain for each 

e leme nt 

1. Equations relating the boundary displacements to the boundary 
forces  of the element not subjected to any distributed loading. 

2. Boundary forces  required to equilibrate the loaded element 
when its boundary displacements a r e  identically equal to z e r o  
o r ,  "fixed". 

Relations between boundary displacements and forces  were  derived by 

Gallagher (1963) in matrix form.  

assumed meridional power s e r i e s  displacement pattern in  which the number 

of coefficients was equal to the number of generalized boundary displace- 

ments of the element. 

potential energy that taking more  te rms  in the displacement function 

improved equilibrium in  the interior of the element and led to a n  improved 

stiffness matrix. 

elements  (such as straight and curved beams, c i rcular  plates, and cylindri- 

c a l  and conical shel ls) .  Instead of computing the t rue  fixed-edge fo rces ,  he 

simply lumped the external loading at the boundaries of the elements.  

A stiffness mat r ix  was derived with a n  

Pian (1964) showed by the principle of minimum 

Klein (1 964) applied both methods to  various s t ruc tura l  

In the following two parts  of this section the stiffness matrix and the 

fixed-edge forces  a r e  derived fo r  an element of a shel l  of revolution. 

4-1 
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'The finite element is chosen to approximate any given shell  of revolution 

a s  closely a s  possible. 

influence lunc t ions.  

The fixed edge forces a r e  found by the use of 

4 .2  STIFFNESS MATRIX 

In previous finite element analyses, shells of revolution were d is -  

This modeling introduced residual cussed a s  assemblies  of conical frusta. 

nioinents due to the abrupt change of meridional slope. 

desirable t o  use a shell element that will match the meridional radii and 

slopes of the model at the element boundaries with those of the actual 

s t ruc ture ,  Such a n  element is one with a curved meridian as  shown on 

Figure 4 - 1 .  

It is therefore 

W' 

U' 

I a 
- -  

(a )  Isometric View (b)  Section Para l le l  to  Axis 

Figure 4 -  1 - Shell Element with Curved Mci-idian 

4 - 2  
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F o r  this element, the radius as a function of the coordinate < a s  
shown on Figure 4 - l b  i s  assumed to be 

where 
a = a  

a l  = tany 

0 

(a - a" - 1 3 - - (tany' -t 2 t any)  - - L - 2  a 2  - 
2 (tany' + tany t - (a - a' 1 - 

a3 - - -  , 2  - 2  (4- 1) 
L L 

Two special  ca ses  a r e  the conical element, where 

a = a ,  a = tany , a 2 = a 3  = 0 ,  0 1 

and the cylindrical element, where 

a = a ,  a1 = a2  = a3 = 0 . 0 

The displacement pattern of an element is character ized a s  a power 

s e r i e s  along its meridian and a Fourier expansion i n  its circumferential  

angle,  so  that 

4 - 3  
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where 

The coefficients am a r e  labeled i n  this particular pattern to  place emphasis 

on the w - dis pla c erne nt . 
i 

The rotation of the meridian can be derived f rom Figure 4-2. 

Figure 4-2 - Rotation of the Meridian 

4-4 
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F r o m  Equation (A-5 )  in the Appendix 

dx  = A dt  , 

s o  that the rotation of the meridian i s  expressed by 

. a 
G *  where ( ) = 

(4-4) 

. ’  The boundary displacements a r e  represented by U ,  V ,  W ,  and U: V ,  W a s  

shown on Figure 4 - l a ,  and the meridional rotations of the boundaries a r e  

denoted by 8 and 8’. The boundary s t r e s s  resultants a r e  shown on Figure 

4 - 3 ,  where S and T a r e  the effective out-of-plane and in-plane shears ,  

respectively. 

of positive boundary displacements. 

All  boundary forces a r e  assumed to  be positive i n  the direction 

T‘ 
S‘ A 

N’ 

/ \  ----- -----=XI 

M ’ \ .  

Figure 4 - 3  - Boundary Forces  on  Shell Element 

4-5 
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I 
- 

0 : o  0 0 0 

0 : o  0 0 0 

0 1 0  0 0 0 

0 1 0  0 0 0 

I '  

I 

I 
I 

0 i L 2 L 3  0 0 

L i O  0 L 2 L 3  
I 

I 

o l o  0 0 0 

; L2 L3 

t A4 A4 
0 0  0 ' -  - 

-L 

Considering the m- th  t e r m  of the Fourier  expansion, called the m- th  

harmonic,  one can define an  elemental stiffness matr ix ,  K which re la tes  

the boundary forces to the boundary displacements, so  that 
m' 

in which 

f =  m 

m 

Tm 

'm 

Mm 

N' m 

N 

Tk 
S' 

M' 

m 

m 

- - 
qrn , and 

vm 

wrn 

~ n - l  

U' m 

v d  
W' 

em 
m 
' 

(4-5) 

(4-6) 

Evaluation of Equations (4-3) and (4-4) at the boundaries (=O and [=L gives 

- 
0 0 0  

0 0 0  

1 0 0  

0 -  l o  
x1 

0 0 0  

0 0 0  

1 L L2 

h2 5 
1 2L 0 -  

0 1 0  

0 0 0  

0 0 0  

0 -  l o  
x3 

0 1 L  

0 0 0  

L3 0 0 

3L2 1 L 

x2 .xq 5 - 

4-6 

m 
1 

2 

3 

4 

5 

a 

am 

am 

am 

Urn 

a;;" 
am 7 
am 

8 
m 
9 

am 10 
am 11 

am 12 

.--- 
a 

(4-7) 
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where 

3 -1 X3 = X 1  (2a,)  , and 

3 -1 X4 = X2 ( 2 a 2 +  6 a 3  L)  . 

. Equation (4-7) is wri t ten m o r e  compactly as  

A matrix, k! , is now defined by the following relation 

L o  

so that 

I 
i 

- - 

I4 1 
1 2 x  12 

rJ - - - -  I:; (4- 9) 

4 -7 
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0 

0 

x2 

x2 

12 

-- 
1 

- 

0 

0 

0 

0 
3 

B,’ = 
1 0 0 0 

1 
L 

- -  

0 

0 - 
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The submatr ices  of r b l  a r e  as  follows: I 
0 0 1 0 

- 
3 0 0 x1 -A 1 0 0 0 

0 0 0 

- 
2 x 1  -- 3 - - -  L 2x3 0 

L2 L 
3 - 

L2 
0 

- 
x4 
L2 

-- 

0 

2 - L 3  0 

0 0 

0 0 0 

1 0 0 0 

1 
L 

- -  1 
L 
- 0 0 

I 
I 

4-8 
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1 
I 
1 
1 
I 
I 
E 
8 
I 
I 

I 
I 
8 
I 
I 

e 

, 

0 

0 

0 

0 

0 

-L 

0 

0 

, 
n4 ' 

ncP 
"tu, , 

m4 
mcP 
mtcp . 1 

0 

0 

0 

0 

0 

2 -L 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-L 
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- 
0 

0 

0 

0 

0 

0 

0 

-L 

8x4 

and I is the 4 x 4 identity matrix.  4 

F o r  l inear orthotropic shells of revolution the relations between the 

s t r e s s  resul tants ,  a,  and the s t ra ins  and changes of curvature ,  E ,  of the 

middle surface a r e  
a =  E € =  

B12 

B22 
B33 

D1l 

D12 
=12 
D22 

D 3 3  

4-9 

' (4- 10) 
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in  which 

and 

- Evh ' B22 - 1 - u t  vp 
- Et 

B1l - 1 - ut v'cp 

- - - E(P 
B12 1 - "SI+. 1 - y up 

' 

= G  h 
' B33 t'p 

- 

- h2 
Dij  - 12 Bij . (4- 11) 

The constants appearing i n  Equations (4-10) and (4-11) a r e  defined as 

follows : 

E( , E9 = Young's modulus of elasticity in the ( and cp directions,  
respectively, 

= Poisson 's  ratio corresponding to the 6 and <p directions,  
r e  s pective ly , "1 ' "CP 

= shearing modulus, and 

= thickness of the shell wall. 
t<p G 

h 

The s t r a in  displacement relations for  a shel l  of revolution a r e  given in  

Equation (A-6). 
ment coefficients a s  

The s t ra ins  can be expressed in t e r m s  of the m- th  displace- 

4-10 
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m 
uf 

xm 0 0 0 N 

x 
4 

9 

0 

N 
w 

z* 5 
N ur 

x* 
0 0 0 0 

h 
h 

N 
d 

1 .  4- 
crr 
uf 

x i  
N 
-d 

x 
m 

I 
-+ 
v 0 0 0 

.UP 

x- 
nl 

N 
UP 

x" 0 0 0 

0 0 0 0 

x* 0 0 0 0 

w 

xm 
w 

x* 
0 0 0 4 

x 

x" x" 0 0 0 0 

0 

0 

0 

I 
I x9 i x" 

0 1  
I I 

0 

1 I 
I I  
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in  which 
1 1 H 1 - x  - J 

HZ - A R  
- R' R' 

2 m - m - H3 - - R '  H 6 - 2  ' 

R' R" H7 = - 
A4 
2 m  H8 = - A R  

2m R' 

J 

(4-13) 

The s t ra in  energy of the shell element in  t e r m s  of the internal s t ra ins  

and s t r e s s e s  i s  

surf a c e 

For the m- th  harmonic this becomes 

4-12 

(4- 14) 

(4-15) 



I 
LMSC/HREC A791267 

The notation 

indicates that only the squares  of sines and cosines occur when the m-th 

Four ie r  t e r m s  a r e  substituted into Equation (4- 14). 
is given by 

The surface element 

dS = A R  d t  dv  

in  Equation (4- 15). 
obtains 

Substituting Equation (4-9) into Equation (4-15) one 

The work done by the (external) boundary forces  acting through the 

boundary displacements is 

2 s in  mv 

‘m a 1  cos  mq 

= JZTqm [ a I4 ,“,I fm( 2 ) 
0 

(4- 16) 

(4- 17) 

The radi i ,  a and a’ , of the boundary c i rc les  a r e  shown on Figure 4-lb. 

The total  potential energy of the element for  the m-th harmonic is 

- n m =  u m -  , v m *  (4- 18) 

Comparison of Equations (4-15), (4-16), and (4-17) shows that the integral  

4-13 



LMSC/HREC A791267 

and v ~ ,  so  that it may be factored f r o m  n,. u r n  occurs  in both, 

The condition of minimum potential energy, 

where qim and am a r e  the elements of q and &m respectively, yields b j m b ’  

in which 

Let  

#“ = 

O O l  
1 a I4 

I4 J 0 0 

8x81 8 x 4  

m 
aa 

With Equation (4-20) it is possible to eliminate am f r o m  Equation (4-19), 

so that 
b 

4-14 

, 

(4- 19) 

(4-20) 
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f r o m  which the desired stiffness matr ix  i s  obtained as 

(4-21) 

(4-22) 

The computations involved in obtaining 

use of Weddle's seven point integration 
6 
formula 

a r e  made on the computer by 

f (x) = - 3h (f t 5fl -k f 2  -k 6f3  -k f 4  -k 5f5 -k f6 )  , 10 0 

X 
0 

where fi  f (xo t- ih) i =  0 , ( 1 ) , 6  - (4-23) 

F o r  a cylindrical element the integration can be done analytically by 

letting A(4) = 1, and R(() = a' = a. Equation (4-19) then becomes 

and 

-m 
The individual t e r m s  of G 
the numerical  integration using Weddle's formula.  

a r e  listed in  Section A. 2 for  comparison with 

4-15 
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4.3 FIXED EDGE FORCES 

Fixed edge forces  resulting f r o m  givcn loading functions a r e  obtained 
::< 

by use of the principle of vir tual  work . 
for  equilibrium of any l inear  s t ructural  sys tem is that the v i r tua l  work fo r  all 

virtual displacements is  identically equal to zero.  

is its scalar product with the virtual displacements of i t s  point of application. 

A necessary  and sufficient condition 

The vir tual  work of a fo rce  

Since the repetitive technique discussed in  Section 2 requires  proportion- 

ali ty between loading functions and deformation patterns , distributed loadings 

a s sume  the following f o r m  

m=O 

m=O 

m=O 

where 

m m m 2  m 3  
Pw(4) = P ,  + PFt -t P 3 5  -t P 4  4 . 

(4-25) 

;< 
Johann Bernoulli,  "Das Prinzip der virtuellen Verr&kungen," Basle,  
Switzerland, January 26, 1717. 

4-16 

(4-26) 



8 
I LMSC/HREC A791267 

m 
The coefficients 

(4-3), s o  that Equations (4-26) and (4-3) can be writ ten as 

are  labeled identically to the coefficients a. i n  Equation 
1 

I 
D 

1 
I 
1 
I 
I 
I 
I 
I 
I 
I 

respectively,  i n  which 

o o o o 1 ( o o ~ 2 ( 3 0 0  

2 3  1 ( ~ ~ 0 0 0 0 0 0 0 0  
3 x 1 2  

, and am = 

(4-27) 

The coefficients a m  for  any given boundary displacements are  defined f r o m  

Equations (4-8),  (4-19), and (4-20) as D 
I am = D” q, 

4-17 
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Nf ’ 

Sf’ 

m 

Tf’ m 

Mf’ ,  m 

m 

1 2 x 8  

therefore ,  f r o m  Equation (4-27) 

The fixed edge forces a s  indicated on Figure 4-3 a r e  represented i n  

vector f o r m  as 

f f =  m 

(4- 2 8 )  

(4-29) 

F o r  example, the derivation of one fixed edge quantity, the moment 

due to a loading p (6) i s  developed in detail  below. -m As i l lustrated on 
m Mm’ 

Figure  4-4 a vir tual  rotation (IMf i s  applied at the left boundary of the element 

with all other  boundary displacements restrained. 

displacement field is 

The corresponding vir tual  

4-18 
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’ 

Mer idia? 

Before Virtua 

After Virtual M 
a’ 

- 

Mf ni 

a 
- -  --- 

t =  0 4 ( =  L 

Figure 4-4 - Virtual Displacements on Element 
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The s u m  of all vir tual  work is 

2n 
' 2  M k  cos Cp a d<P+ 

0 

4- /* /L Em Mf "'(4) -rn p ( O A R  (:I:) d q d (  E 0 (4-31) 

0 0 

As in the derivation of the stiffness matrix,  the integrals 

cancel out, so  that,  with 

a Mm(- l )  f -k f ~ ~ ( ~ ) ~ m ( ( ) A R  d( = 0 

0 
o r  

M~ = 1 i im" ' ( ( )Fm(<)AR d( . 
m a Mf 

0 

(4- 32) 

(4- 33) 

The other  fixed edge fo rces  can  be obtained i n  a similar manner .  

Equations (4-27), (4-28) and (4-29) and successively applying the above 

procedure fo r  each fixed edge force,  yields all the v i r tua l  work equations as 

Using 
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[-a;! - - - - - - - - - - - - -  ."I ff m 
I -a I 

Thus, the vector of fixed edge forces i s  given by 

where 

F o r  a cylindrical shell ,  A = 1, R = a' = a ,  and Equation (4-35) reduces to  

where 

which is  

4-21 
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I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 

I 
I 

I O  
I 
I -  

I o  

0 

0 

L3 - 
3 

- L4 
4 

L4 I 
- 1  

4 !  
L5 i 
_I 

5 ;  
I I 

0 

0 

0 

0 (4- 36)  

1 2 x  12 
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Section 5 

NUMERICAL FORMULATION 

A computer program,  coded entirely in  F o r t r a n  IV, was wri t ten to  

implement the formulation presented in Sections 2, 3,  and 4. 
i s  given on Figure 5- 1. 

A flow char t  

Required input to  the program a r e  a minimum description of the 

geometr ical  and elastic propert ies  of the whole shell, boundary conditions , 
harmonic number,  and static loading functions f r o m  which the first approxi- 

mation is computed for  each mode shape. 

The subroutine used to solve the eigenproblem 

2 (w M - K ) ;  = 0 

is the one used by Whetstone and Pearson (1966). 

computer t ime a r e  required by this routine to solve low ordered equations. 

Only a few seconds of 

Two numerical e r r o r s  a r e  possible i n  static analysis of a she l l  by the 

s ta te  vec tor  walk-through method: 

1. Elements  a r e  too l a r g e  f o r  their behavior t o  be accurately 
descr ibed by cubic parabola displacement functions; 

The number of elements is too  la rge  f o r  successive t r ans fe r  
ma t r ix  multiplication to remain accurate .  

2. 

Both of these  e r r o r s  were  studied with a closely related but a lgebrai-  

cally s impler  problem of a rectangular plate with two opposite edges simply 

supported, thus enabling a single Fourier  s e r i e s  solution a s  i n  the she l l  

analysis.  

edge fo rces  a r e  available f rom classical  plate theory,  Dean (1967). 

F o r  comparison, the exact plate s t r i p  stiffness ma t r ix  and fixed 
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Read initial static load 
c for mode N 

STA4RT (2 
Read geometric and elastic I properties of whole shel l  

Store joint circle 
deformations of 

Store stiffness ana 
m a s s  matr ices  of 
modes l , ( l ) , N - 1  

t 

3 
Walk-through static solution 
(a) for boundary quantities 
(b)for  interior states and 

joint circle deforma- 
I tions of mode N I 

1 
Calculate N-th row and 
column of stiffness and 

mass matr ices  

1 

Solve the eigenvalue 
2 problem (w M - K)F=O 

c 

Yes 
N = Nt1 + Is number of desired N o  

modes reached? 

I 

1 

Check convergence, No Generate a new 
Is accuracy sufficient? static load f rom 

I modes 1, ( l ) ,  N 
I . I 

Figure 5 - 1  - Flow Chart of Computer Program 
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According to this  reference,  an  asymptotic solution with a one-term co r rec -  

tion was possible for  a plate s t r i p  that complies with the condition 

where m = harmonic number, and a/b = aspect  ra t io  of the s t r ip  (a is the 

width, b the length of the s t r ip) .  

f o r  a n  element with a cubic parabola displacement assumption. 

This c r i te r ion  was a l so  found to  be valid 

In the case  of a shell  of revolution, a cr i ter ion to  es t imate  element 

s ize  is the wave length at which a n  edge disturbance penetrates into the shell. 

Approximately one-eighth of this  wave length i s  the maximum element s ize  

to  give a sufficiently accurate  t ransfer  matrix. F o r  the zeroth harmonic,  

the "breathing"-mode, of a shel l  of revolution the wave length is approxi- 

mately 

where 

Rq = principal radius of Cp coordinate, and 

h = thickness of the shell. 

F o r  higher harmonics this  wave length becomes shorter ;  therefore ,  the 

corresponding element s ize  should be reduced accordingly to re ta in  the 

relative accuracy. 

variable element s izes .  

and l a rge r  ones in  regions where membrane action prevails.  

F o r  flexibility in the application, the program permi ts  

Small  elements may be used in  regions of bending, 
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Section 6 
EXAMPLE PROBLEMS 

6.1 RECTANGULAR PLATE 

7 2 a = b = 100 in., h = .714 in., E = 3 x 1 0  lbs/in , 

-4 2 4  v = .3, p = 7 . 3 3 ~ 1 0  lbs -sec  /in , 

Simple Side Support 

Figure 6.1 - Rectangular Plate 

I 6-1  
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The following frequencies were obtained for  the first harmonic using 

10 elements.  

1 st Mode 2nd Mode m = l  

1 st approximation 13.7621 cps 34.3716 cps  

2nd approximation 13.7311 cps 34.3367 cps 

3rd approximation 13.7311 cps 34.3367 cps 

10th approximation 13.7311 cps 34.3367 cps 

F r o m  classical  plate theory, the frequencies are  

2 

ph a b 

f = -  where u2 = -( D &+L 
2 n  ’ 

and 

Eh2 
2 D =  

12(1 - Y  ) 

For i = j = 1 th is  formula gives 

= 13.7309 cps f1 ,2  = 34.3274 cps . f l ,  1 

The frequencies obtained for higher harmonics  are as follows: 

1 st Mode 2nd Mode 

m = 2, 10th approximation 34.3275 cps  54.9418 cps 

classical  theory 34.3274 cps 54.9438 cps  

m = 3, 10th approximation 68.6545 cps 89.2527 cps 

classical theory 68.6548 cps 89.2512 cps . 
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Static solutions fo r  sine-wave loadings were  computed. The resul ts  

fo r  m = 1 and m = 5 a r e  summarized below. 

25 = .o .1 .2 . 3  .4 .5 a 

m =  1 

computed displacements ”‘ WE) = .OOO .07930 .15085 .20762 .24408 .25664 

c lass ica l  theory w e )  = .OOO .07927 .15078 .20756 .24403 .25665 
>;< 

m = 5  

computed displacements *< w($) = .OOO .31074 .59016 .81073 .95160 1.0000 

.*. ,*< 
c lass ica l  t h e o r y ’  w($) = .OOO .309 .588 .809 .945 1 .oo 

The computed displacements for m = 5 resul t  f r o m  the 10th i teration 

on the first mode, using 100 elements. 

>:e 1 .o Normalized to a central  deflection of 3 

>: >;< 
Normalized to  a central  deflection of 1.0 
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6.2 CYLINDRICAL SHELL 

a = 5 in., L = 1 in., 2 in., 2.5 in., h = .01 in. 

Y = . 3 ,  

left  U = V = W  = M = 0 ,  right N = V = W  = M = O  
E = 3 x 1 0  7 lbs/in 2 , p = 7 . 3 3 ~ 1 0  -4 lbs-sec 2 /in4, boundary conditions: 

’ Figure 6.2 - Cylindrical Shell 

For L = 1 in., and m = 0,  the sequence of frequency approximations 

computed by the program was: 

2nd Mode 1 s t  Mode 

1 s t  approximation 6563.28 cps 7478.36 cps 
2nd approximation 6483.48 cps 7459.97 cps 

3 rd approximation 6473.94 cps 7459.94 cps 

4th approximation 6472.68 cps 7459.94 cps 

5th approximation 6472.51 cps 7459.94 cps 

I 6 -4 
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Ten elements were  used in  the above solution. 

frequencies of a cylinder with 

right boundaries a r e  computed from Donnell's equation: 

F o r  comparison, the 
N = V = W = M = 0 at the left and the 

2 4  x2 = l t c  a , 
j 

@ 
L .  , and a = h2 

1 2 a  ( 1 - Y  ) 2 j 
c2 = 

F o r  j = 1 , 2  

f l  = 6820 cps,  f 2  = 7810 cps . 

These resul ts  are slightly higher because DonnelI's equations do not 

account for  in-plane inertia. 

F o r  L = 2 in., and m = 0,  the frequency approximations are,  

with 20 elements 

1st Mode 2nd Mode 

1 st approximation 6467.34 cps 6569.46 cps 

2nd approximation 6426.56 cps 6594.61 cps 

3rd approximation 6415.87 cps 6564.17 cps 

4th approximation 6410.59 cps 6583.99 cps 

5th approximation 6407.21 cps 6566.82 cps 
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and with 10 elements 

1 s t  Mode 2nd Mode 

1 st approximation 6466.37 cps 6567.86 cps 

2nd approximation 6426.67 cps 6593.80 cps 

3rd approximation 6415.99 cps 6563.61 cps 

4th approximation 6410.71 cps 6584.10 cps 

5th approximation 6407.31 cps 6565.00 cps 

F o r  L = 2.5 in., m = 0, and 25 elements the computed frequencies are  

1 s t  Mode 2nd Mode 

1st approximation 6443.05 cps 6618.34 cps 

2nd approximation 6409.48 cps 6459.09 cps 

3 r d approxima tion 6400.73 cps 6679.87 cps 

4th approximation 6396.12 cps 6470.69 cps 

5th approximation 6393.89 cps 6670.64 cps 

The resu l t s  indicate that a few more i terations would be required fo r  

complete convergence. 

Static solutions corresponding to  a uniform rotationally symmetr ic  

p re s su re  loading a r e  summarized in Table 6-1. 

6-6 
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Table 6-1 

Static Solutions, Cyiindrical Shell jm=0 j 

!Ed 

I 
I 

Radial Deflections (in.) Bending Moments (in-lbs/in.) 
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". 
10 Elements 

L = l i n  
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ln 
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Class ica l  
Theory 
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m 0 
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h + 
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9 
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n * 
Q 
N 
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9 * * 
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9 
N 
Lc 
Y N 
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* 
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l-l 
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* 
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-t 
l-l 

N 0 * 0 + 0 
m 0 
Y 9 
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d 
4 

4 

9 
I 

* 
N 
d 
4 

9 
I 

N 
ln 
In 
N 
Lc 

0 
a co 
In 
00 

20 Elements  

L = 2in.  

Lc 
0 
D co co 

co 
N 
r? 
l-l 
4 

d 
N 
d 
4 

? 
I 

Class ica l  
Theory 
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A P P E N D I X  

A. l  EQUATIONS O F  LINEAR SHELL THEORY 

The length of a line element on a shell surface in orthogonal coordinates 

is 

W 
1 v + -  u t- A1, 2 

A1 9 1 A I A Z  
1 - 

Rl 
El  - - 

- - -  l v  + -  2 ,  1 u t -  l w  
A 

€ 2  A2 , 2  A 1 A 2  R2 

, and 

2 
Y2 

The strain displacement relations f o r  the middle surface of a thin shallow 

shell a r e  given by 

A - 1  

(A-2)  
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where 

and 

For  a shell  of revolution in cylindrical coordinates, the position vector 

of any point on the middle surface is given by 

3 

in which 1 and 7 a r e  the unit vectors in the radial and axial directions, 

respectively. The coordinates, 6 and ~ 7 ,  correspond to  x and x 

respectively, and represent the length along the axis of revolution and the 

angle of longitude, as  illustrated on Figure A-1. 

r z 

2' 1 

Circle 

( 4  c p ,  

A t i  

t tlR 

-- 

(b) Surface Element 

( a )  Isometric View of Frustum 

Figure A-1 - Geometry of Shell of Revolution 

A - 2  
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F o r  a cylindrical coordinate system, the me t r i c  coefficients of Equations 

(A-1) and (A-2) a r e  

A% - - f/;;"T.= A ,  and 

and the principal curvatures  a r e  

-- 1 R" - - -  
3/2 - -  

Kt - R l  . (R'2 t 1) 
- - - -  R" , and 

A3 

(A-5) 
1 

- R A  
- -  

The principal radi i  are shown on Figure A - l a  and the metric coefficients on 

Figure A-lb. 

Using these coefficients and curvatures in Equations (A-2), one obtains 

the s t r a in  displacement relations for a shell  of revolution in cylindrical coordi-  

nates as 

1 1 

u ' + R e W  - -  € 4  - A 

l w  1 R' 
<p - R  A R U + -  RQ - - T j t -  

1 R' + -v'- - 
AR 

1 - -  Q'P - R A .  

- 1 .. R' w/ 
K - - - T W - -  cp R A ~ R  

2 - /  2R' . - - - -  w t -  W 

%P AR A R ~  

8 

J 

9 

9 

, and 

, (A-6) 

A-3 
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A.2 INTEGRAL TERMS 
ELEMENT 

O F  THE STIFFNESS MATRIX FOR A CYLINDRICAL 

The integral  for a cylindrical shell element 

given by 

(Frn = 

The terms 

- 
G1 1 

G12 
- 

- 
G1 3 

- 
G14 

- 
G1 5 

- 
G1 6 .  

- 
of Gm a r e  

as derived in Section 4 is 

L 

a a 

(.22 f a 

(B22 + a 

a 

2 m 

a a 
-!- DZ2 $) $ - 2D12 7 L ’  

a a a 

1 
B12 a ’ 

A-4 
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2 m L  
a 

- 
G18 = B22 22 , 

- 1 L2 
G19 = 2B12 a 2  J 

- 1 L3 
G1, 10 9 = 3B12 ;;; 7 

3 - m L  
G1,ll a = B22 23 9 

4 - m L  
G1,12 = B22 24 a a 

2 
L ,  m 

a a a - G22 = (.22 + D22<) $ t 4D33  3 

- 4 4  m 2 t ..ip$)+ 2 , 

G23 = (.22+ a +- D22 %)4 a ( - 2 D 1 2 7  a 

+ 1 2 D g 3 7 -  m2) - L,' J 

2 
(-6D12 7 m - 4 5  

G24 = k22 + a ' D22 %)% a a 

A-5 
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3 - m L  
G28 = B22 23 a 

4 - - m L  
- B22 2 4  G2, 1 1  a 

5 - m L  
= B22 2 5  G2, 12 a 

2 m - 4 5  
s) % + ( -4D12  7 + 1 6 D 3 3  

G33 = ( 3 2 2 4  a + D22 a 4 a a 

+ 4 D l l  L , 

L4 2 
1 + 2 4 D 3 3  %) 4 G34 = (BZ2 7 + D22 $) % + (- 8 D 1 2  2 m 6 - 
a a a a 

+ 1 2 D 1 1  7 L2 
I 
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3 - m L  
G37 = B22 23 9 a 

4 m L  

a G38 = B22 2 4  Y 

5 - - m L  
- B22 25 9 G3, 1 1  a 

6 - m L  
G3y 12 = B22 2 6 9 a 

L5 2 m 4 7  
G44 = (BZ2 2 -1 t D22 %) % + (- 12D12  7 t 36 D33 $) 5 

a a a 

t 3 6 D l l  3 L3 
s 

- 
G45 = 

4 m L  

a 

- - 
G47 - B22 24 Y 
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5 - m L  

G48 a = B22 2 5  ’ 

G49 D 

= 2B12 1 7 L5 

- 1 L6 
G4D 10 = 3B12 2 7  9 

6 - m L  
G4, 1 1 a = B22 2-b ’ 

= B22 27 ’ 

G55 = B33 2 L ’  

7 - m L  
G4D 12 a 

2 m 

a 

- 

- 
G56 

2 m 

a B33 2 
- L2 
2 

- mz L~ 
G59 = - B33 7 3 

- - m2 L~ 
G5, 10 

a 

- - B 3 3 2 4  ’ 
a 
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2 - m L  
G 5 J l l  = - 2 B 3 3  a - Z J  

3 - m L  G5, 12 = - 3 B 3 3 a ~ ,  

- m2 L~ 
G66 = B1l ' B33 2 3 a 

, 

J 

- L2 m2 L~ 
-I- B 3 3  2 4 G6 9 

- L3 m2 L~ 
3 B l l  3 + B33 z 4 G6, 10 

= 2 B l l  7 
a 

= 
a 

m - 
G 6 J l l  = (.,2 a - 2 B 3 3  ?) $ 
- m L4 
G6, 12 - 3 B 3 3  F) 7 J 

2 m 

a 

- 
G77 = B22 T 
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- 
G7D 10 

- 
G7, 11 

- 
G7D 12 

- 
G88 

- 
G89 

G8D 10 

- 
GsD 11 

- 
G8, 12 

- 
G99 

- 
G9D 10 

3 m L  
3 B 1 2  a 3 D 

m2 L~ 
B22 2 3 a 

m2 L~ 
B22 2 4 a 

m2 L~ 
B22 2 a 3 i- B 3 3 L  

m L3 
( 2 5 2  a - B33 E) 3 
k B 1 2  a m - B33 F) < D 

m2 L~ L2 
B22 2 4 + 2 B 3 3  2 

rn2 L5 L3 
B22 2 5 + 3 B 3 3  3 

L3 In2 L5 
+ B33 2 5 D 4 B l l  3 

L4 
6 B l l  4 D 

D 

a 

D 

a 

a 

D 
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= 7 m - 3 B 3 3  a)T m L~ D 

- 
G9, 12 

- 
G1O 

G 1 O  
- 

L5 m2 L~ 
= 9 B l l  7 + B33 2 7 ’ a 10 

m 
11 

- m2 L~ L3 
G 1 l , l l  B22 2 5 + 4 B 3 3  3 D a 

- m2 L~ L4 
G11D12 = B22 2 6 + 6 B 3 3  7 D 

a 

L5 , and 
- m2 L~ 
G12D12 = B22 2 7 + 9 B 3 3  5 a 

i ,  j = 1, ( l ) ,  1 2 .  

A. 3 PERMUTATION MATRICES FOR VARIOUS BOUNDARY CONDITIONS 

The boundary s ta te  vectors,  s, a r e  partitioned into known and unknown 

quantities by use  of permutation mat r ices ,  PsD s o  that 

A-1 1 

(A-9) 
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as  indicated in Equation (3-15). 
of orthogonality, expressed as  

A permutation matrix contains the property 

:;: 
p-1 s = p S (A- 10) 

The following i s  a listing of the permutation ma t r i ces  a r i s ing  f rom various 

boundary 'conditions. 

(a) f reely supported 

(b) fixed 

(c) f r e e  

- 
0 0 0 0 1 0 0 0  
0 1 0 0 0 0 0 0  
0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0  
0 0 0 0 0 0 1 0  
0 0 0 1 0 0 0 0  

- 

U 
v=o 
w = o  
8 
N = O  

T 
S 

M = O  

E Pss 
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(d) guided-free 

0 0 0 1 0 0 0 0  

0 0 0 0 1 0 0 0  
- 

ps - 

A shell  pole requires  special  attention regarding the harmonic in 

question, according to  Greenbaum (1964). There a r e  three  cases  

m = O  u = v = s =  , g = o  (guided f ree)  

m = l  U t V  = T = W = M = 0 

A-13 

(fixed) 


